3,613 research outputs found

    Backflow and dissipation during the quantum decay of a metastable Fermi liquid

    Full text link
    The particle current in a metastable Fermi liquid against a first-order phase transition is calculated at zero temperature. During fluctuations of a droplet of the stable phase, in accordance with the conservation law, not only does an unperturbed current arise from the continuity at the boundary, but a backflow is induced by the density response. Quasiparticles carrying these currents are scattered by the boundary, yielding a dissipative backflow around the droplet. An energy of the hydrodynamic mass flow of the liquid and a friction force exerted on the droplet by the quasiparticles have been obtained in terms of a potential of their interaction with the droplet.Comment: 5 pages (REVTeX), to be published in Phys. Rev.

    Anisotropic Lattice QCD Studies of Penta-quark Anti-decuplet

    Full text link
    Anti-decuplet penta-quark baryon is studied with the quenched anisotropic lattice QCD for accurate measurement of the correlator. Both the positive and negative parity states are studied using a non-NK type interpolating field with I=0 and J=1/2. After the chiral extrapolation, the lowest positive parity state is found at m_{Theta} \simeq 2.25 GeV, which is too massive to be identified with the experimentally observed Theta^+(1540). The lowest negative parity state is found at m_{Theta}\simeq 1.75 GeV, which is rather close to the empirical value. To confirm that this state is a compact 5Q resonance, a new method with ``hybrid boundary condition (HBC)'' is proposed. The HBC analysis shows that the observed state in the negative parity channel is an NK scattering state.Comment: A talk given at International Workshop PENTAQUARK04, July 20-23, 2004 at SPring-8, Japan, 8 pages, 7 figures, 2 table

    Energy-Efficient Monopod Running with a Large Payload Based on Open-Loop Parallel Elastic Actuation

    Get PDF
    Despite the intensive investigations in the past, energetic efficiency is still one of the most important unsolved challenges in legged robot locomotion. This paper presents an unconventional approach to the problem of energetically efficient legged locomotion by applying actuation for spring mass running. This approach makes use of mechanical springs incorporated in parallel with relatively low-torque actuation, which is capable of both accommodating large payload and locomotion with low power input by exploiting self-excited vibration. For a systematic analysis, this paper employs both simulation models and physical platforms. The experiments show that the proposed approach is scalable across different payload between 0 and 150kg, and able to achieve a total cost of transport (TCOT) of 0.10, which is significantly lower than the previous locomotion robots and most of the biological systems in the similar scale, when actuated with the near-to natural frequency with the maximum payload.This study was supported by the Swiss National Science Foundation Grant No. PP00P2123387/1 and the Swiss National Science Foundation through the National Centre of Competence in Research Robotics

    Multi-modal Sensor Fusion for Learning Rich Models for Interacting Soft Robots

    Get PDF
    Soft robots are typically approximated as low-dimensional systems, especially when learning-based methods are used. This leads to models that are limited in their capability to predict the large number of deformation modes and interactions that a soft robot can have. In this work, we present a deep-learning methodology to learn high-dimensional visual models of a soft robot combining multimodal sensorimotor information. The models are learned in an end-to-end fashion, thereby requiring no intermediate sensor processing or grounding of data. The capabilities and advantages of such a modelling approach are shown on a soft anthropomorphic finger with embedded soft sensors. We also show that how such an approach can be extended to develop higher level cognitive functions like identification of the self and the external environment and acquiring object manipulation skills. This work is a step towards the integration of soft robotics and developmental robotics architectures to create the next generation of intelligent soft robots

    Augmenting Self-Stability: Height Control of a Bernoulli Ball via Bang-Bang Control

    Get PDF
    • …
    corecore